Home
Class 12
MATHS
Let overset(to)(a) =2hat(i) + hat(j) -2h...

Let `overset(to)(a) =2hat(i) + hat(j) -2hat(k) " and " overset(to)(b) = hat(i) + hat(j) . " If " overset(to)(c ) ` is a vectors such that `|overset(to)(a)"." overset(to)(c ) = |overset(to)( c)| , |overset(to)(c )- overset(to)(a)|= 2sqrt(2)` and the angle between `(overset(to)(a) xx overset(to)(b)) " and " overset(to)( c ) " is " 30^(@), " then "|(overset(to)(a) xx overset(to)(b)) xx overset(to)( c )|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let overset(to)(a) = hat(i) - hat(j) , overset(to)(b) - hat(k) , overset(to)( c) - hat(k) - hat(i) . If overset(to)(d) is a unit vector such that overset(to)(a) , Overset(to)(d) =0= [ overset(to)(b) overset(to)(c ) overset(to)d)] then overset(to)(d) equals

If overset(to) (a) = hat(i) + 2 hat(j) + hat(k) and overset(to)(b) = hat(i) - 2 hat(j) - 3 hat(k) then ( overset(to)(a) + overset(to)(b) ). ( overset(to)(a) - overset(to)(b) ) = …......

Let overset(to)(a) = hat(i) - hat(j) , vecb=-hat(j) - hat(k) , overset(to)( c) =- hat(i) - hat(k) . If overset(to)(d) is a unit vector such that overset(to)(a).vec(d) =0= [ vec(b) vec(c ) vecd] then overset(to)(d) equals

If overset(to)(a) , overset(to)(b) , overset(to)(c ) are non-coplanar unit vectors such that overset(to)(a) xx (overset(to)(b) xx overset(to)(c )) = ((overset(to)(b) + overset(to)(c )))/(sqrt(2)) , then the angle between overset(to)(a) " and " overset(to)(b) is

If overset(to)(A) = 2hat(i) + hat(k) , overset(to)(B) = hat(i) + hat(j) +hat(k) " and " overset(to) (C ) = 4hat(i) - 3hat(j) +7hat(k) Determine a vector overset(to)(R ) " satisfying " overset(to)(R ) xx overset(to)( B) = overset(to)( C ) xx overset(to)( B) " and " overset(to)(R ) " ." overset(to)(A) = 0

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

Let overset(to)(A),overset(to)(B)" and " overset(to)(C ) be unit vectors . If overset(to)(A).overset(to)(B) = overset(to)(A).overset(to)(C ) =0 and that the angle between overset(to)(B) " and " overset(to)(C )" is " pi//6. Then overset(to)(A) =+-2 (overset(to)(B)xxoverset(to)(C ))

Let overset(to)(A),overset(to)(B)" and " overset(to)(C ) be unit vectors . If overset(to)(A).overset(to)(B) = overset(to)(A).overset(to)(C ) =0 and that the angle between overset(to)(B) " and " overset(to)(C )" is " pi//6. Then overset(to)(A) =+-2 (overset(to)(B)xxoverset(to)(C ))

Let overset(to)(a) =2hat(i) +hat(j) + hat(k), overset(to)(b) =hat(i) + 2hat(j) -hat(k) and a unit vector overset(to)(c ) be coplanar. If overset(to)(c ) is perpendicular to overset(to)(a) " then " overset(to)(c ) is equal to