Home
Class 12
MATHS
In the expansion of ((x)/(costheta)+(1)/...

In the expansion of `((x)/(costheta)+(1)/(xsintheta))`, if `l_(1)` is the least value of the term independent of `x` when `(pi)/(8) le theta le (pi)/(4)` and `l_(2)` is the least value of the term independent of `x` when `(pi)/(16) le theta le (pi)/(8)`, then the value of `(l_(2))/(l_(1))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

In the expansion of ((x)/(costheta)+(1)/(xsintheta))^(16) , if l_(1) is the least value of the term independent of x when (pi)/(8) le theta le (pi)/(4) and l_(2) is the least value of the term independent of x when (pi)/(16) le theta le (pi)/(8) , then the value of (l_(2))/(l_(1)) is

In the expansion of ((x)/(costheta)+(1)/(xsintheta))^(16) , if l_(1) is the least value of the term independent of x when (pi)/(8) le theta le (pi)/(4) and l_(2) is the least value of the term independent of x when (pi)/(16) le theta le (pi)/(8) , then the value of (l_(2))/(l_(1)) is

In the expansion of ((x)/(costheta)+(1)/(xsintheta))^(16) , if l_(1) is the least value of the term independent of x when (pi)/(8) le theta le (pi)/(4) and l_(2) is the least value of the term independent of x when (pi)/(16) le theta le (pi)/(8) , then the value of (l_(2))/(l_(1)) is

In the expansion of ((x)/(costheta)+(1)/(xsintheta))^(16) , if l_(1) is the least value of the term independent of x when (pi)/(8) le theta le (pi)/(4) and l_(2) is the least value of the term independent of x when (pi)/(16) le theta le (pi)/(8) , then the value of (l_(2))/(l_(1)) is

If 0 le theta le pi//2 then

Solve : cos theta cos 2 theta cos 3 theta =(1)/(4) (0 le theta le pi)

If sin theta = (1)/(2)cos theta , and 0 le theta le (pi)/(2) , the value of (1)/(2)sin theta is

For 0 le theta le pi/2 the maximum value of sin theta + cos theta is

If 0 le theta lt pi/2 and costheta + sqrt(3) sin theta =2 , then what is the value of theta ?