Home
Class 12
MATHS
[" 3.Let "sum(k=1)^(10)f(a+k)=16(2^(10)-...

[" 3.Let "sum_(k=1)^(10)f(a+k)=16(2^(10)-1)," where the function "f],[" satisfies "f(x+y)=f(x)f(y)" for all natural numbers "x,y],[" and "f(1)=2" .Then,the natural number "^(*)a^(2)" is "],[[" (a) "2," (b) "4],[" (c) "3," (d) "16]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let sum_(k=1)^(10)f(a+k)=16(2^(10)-1), where the function f satisfies f(x+y)=f(x)f(y) for all natural numbers x, y and f(1) = 2. Then, the natural number 'a' is

Let sum_(k=1)^(10)f(a+k)=16(2^(10)-1), where the function f satisfies f(x+y)=f(x)f(y) for all natural numbers x, y and f(1) = 2. Then, the natural number 'a' is

Find the natural no. a for which sum _(k=1)^nf(a+k)=16(2^n-1) where the function f satisfies f(x+y)=f(x)f(y) for all natural no. x,y, and further f(1)=2.

The natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x)*f(y) for all natural numbers x,y and further f(1)=2 is

Find the natural number a for which sum_(k=1) ^(n)f(a+k)= 16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural numbers x,y and further f(1)=2 .

Find the natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x,y and,further,f(1)=2.

Find the natural number a for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x).f(y) for all natural numbers and also f(1)=2

Find the natural number a for which sum_(k=1)^nf(a+k)=16(2^n-1) where the function f satisifies f(x+y)=f(x)f(y) for x, y in N and f(1)=2.

The value of natural number 'a' for which sum_(k=1)^(n)f(a+k)=16(2^(n)-1) , where the function satisfies the relation f(x+y)=f(x).f(y) for all natural numbers x, y and further f(1)=2 is

Find the natural number a for which sum_(k=1)^nf(a+k)=16(2^n-1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural number x , ya n d ,fu r t h e r ,f(1)=2.