Home
Class 12
PHYSICS
If veca + vecb = vecc and a^(2) + b^(2)...

If ` veca + vecb = vecc and a^(2) + b^(2) =c^(2)` , then prove that ` veca and vecb` are prependicular to each other .

Text Solution

Verified by Experts

we have , ` vec a + vecb = vecc `
` |veca + vecb|= |vecc|`
or ` a^(2) + b^(2) + 2ab cos theta = c^(2)`
Given that = ` a^(2) + b^(2) =c^(2)`
` c^(2) + 2ab cos theta =c^(2) Rightarrow ab cos theta =0`
or ` cos theta =0 Rightarrow theta = 90^(@)`
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    AAKASH INSTITUTE|Exercise llustration 1 :|1 Videos
  • MOTION IN A PLANE

    AAKASH INSTITUTE|Exercise Try yourself|48 Videos
  • MOCK_TEST_17

    AAKASH INSTITUTE|Exercise Example|15 Videos
  • MOTION IN A STRAIGHT LINE

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - D)|15 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb and vecc be three vectors such that |veca|=2, |vecb|=1 and |vecc|=3. If the projection of vecb along veca is double of the projection of vecc along veca and vecb, vecc are perpendicular to each other, then the value of (|veca-vecb+2vecc|^(2))/(2) is equal to

If veca, vecb and vecc are three non zero vectors such that veca xx vecb = vecc and vecbxx vecc = veca. Prove that veca, vecb and vecc are mutually at right angles and |vecb|=1 and |vecc| =|veca|

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vec|=5 and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12

If veca , vecb are unit vectors such that the vector veca + 3vecb is peependicular to 7 veca - vecb and veca -4vecb is prependicular to 7 veca -2vecb then the angle between veca and vecb is

If veca and vecb be two non collinear vectors such that veca=vecc+vecd , where vecc is parallel to vecb and vecd is perpendicular to vecb obtain expression for vecc and vecd in terms of veca and vecb as: vecd= veca- ((veca.vecb)vecb)/b^2,vecc= ((veca.vecb)vecb)/b^2

Let veca,vecb and vecc are vectors such that |veca|=3,|vecb|=4and |vecc|=5, and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendiculatr to veca and (vecc+veca) is perpendicular to vecb . Then find the value of |veca+vecb+vecc| .

Given vec(a) is perpendicular to vecb+vecc vecb , is perpendicular to vecc+veca and vecc is perpendicular to veca+vecb . If |veca|=1, |vecb|=2, |vecc|=3 , find |veca+vecb+vecc|

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb, vecc be three units vectors perpendicular to each other, then |(2veca+3vecb+4vecc).(veca xx vecb+5vecbxxvecc+6vecc xx veca)| is equal to

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]