Home
Class 12
MATHS
int(0)^(2)(dx)/(x+sqrt(a^(2)-x^(2)))=(pi...

int_(0)^(2)(dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(a)(dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)

int_(0)^(a)(dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)

Prove that : int_(0)^(a) (dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)

Prove that (pi)/(6)

int_(0)^(2)(dx)/(x+sqrt(4-x^(2)))

Evaluate: int_(0)^(a)(x^(4))/(sqrt(a^(2)-x^(2)))dx

The value of the expression (int_(0)^(a)x^(4)sqrt(a^(2)-x^(2))dx)/(int_(0)^(a)x^(2)sqrt(a^(2)-x^(2))dx)=

I=int_(0)^(2)x sqrt(4-x^(2))dx

int_(0)^((pi)/(2))(dx)/(1+sqrt(tan x))=int_(0)^((pi)/(2))(dx)/(1+sqrt(cot x))=(pi)/(4)

int_(0)^(2)x^(2)sqrt(4-x^(2))dx=