Home
Class 12
MATHS
" The integral "int(1+x-(1)/(x))e^(x+(1)...

" The integral "int(1+x-(1)/(x))e^(x+(1)/(x))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(1+x-(1)/(x))e^(x+(1)/(x))dx is equal to

The integral int (1+x-(1)/(x))e^(x+(1)/(x))dx is equal to :

The integral int(1+x-(1)/(x))e^(x+(1)/(x))dx is equal to (1)(x-1)e^(x+(1)/(x))+C(2)xe^(x+(1)/(x))+C(3)(x+1)e^(x+(1)/(x))+C(2)-xe^(x+(1)/(x))+C

The integral int (1+x-(1)/(x))e^(x+1//x) dx is equal to

The integral int(1+x-1/x)e^(x+1/x)dx is equal to

The integral int(1+x-1/x)e^(x+1/x)dx is equal to

The integral int(1+x-1/x)e^(x+1/x)dx is equal to

The integral int(1+x-1/x)e^(x+1/x)dx is equal to a) (x-1)e^(x+1/x)+c b) xe^(x+1/x)+c c) (x+1)e^(x+1/x)+c d) -xe^(x+1/x)+c

The integral int(1+x-1/x)e^(x+1/x)dx is equal to (1) (x-1)e^(x+1/x)+C (2) x e^(x+1/x)+C (3) (x+1)e^(x+1/x)+C (4) -x e^(x+1/x)+C