Home
Class 12
MATHS
If two curves ax^2 +by^2=1 and a'x^2+b'y...

If two curves `ax^2 +by^2=1` and `a'x^2+b'y^2=1` intersect orthogonally,then show that `1/a-1/b=1/[a']-1/[b']`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the curve ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally, then

The curves ax^2+by^2=1 and Ax^2+By^2=1 intersect orthogonally, then

If the curves ax^2 + by^2 =1 and a'x^2 +b'y^2 =1 intersect orthogonally, prove that: 1/a-1/a'=1/b-1/b'

The curves ax^(2)+by^(2)=1 and Ax^(2)+B y^(2) =1 intersect orthogonally, then

If the curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 are orthogonally then …………

If the curvs a x^2 + b y^2 = 1 and a' x^2 + b' y^2 =1 intersect orthogonally, then prove that frac{1}{a} - frac{1}{b} = frac{1}{a'} - frac{1}{b'}

Show that curves ax^2+by^2=1 and cx^2+dy^2=1 intersect orthogonally if , 1/a-1/b=1/c-1/d

Show the condition that the curves a x^2+b y^2=1 and Ax^2+By^2=1 should intersect orthogonally is 1/a-1/b=1/A-1/Bdot

Show the condition that the curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 should intersect orthogonally is (1)/(a)-(1)/(b)=(1)/(a')-(a)/(b)