Home
Class 11
MATHS
Prove that: cos^2 48^0-sin^2 12^0=(sqrt...

Prove that: `cos^2 48^0-sin^2 12^0=(sqrt(5)+1)/8`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^2 48^@-sin^2 12^@=

Prove that cos^2 48^@-sin^2 12^@=((sqrt5+1))/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 42^0-cos^2 78^0=(sqrt(5)+1)/8

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

Prove that cos^(2)48^(@)-sin^(2)12^(@)=((sqrt5+1))/(8) .

Prove that sin^2 48^@ - cos^2 12^@ = - (sqrt(5) +1)/8