Home
Class 11
PHYSICS
The centres of a ring of mass m and a sp...

The centres of a ring of mass `m` and a sphere of mass `M` of equal radius `R`, are at a distance `sqrt(8) R` apart as shown. The force of attraction between the ring and the sphere is

Promotional Banner

Similar Questions

Explore conceptually related problems

Two identical spheres each of mass M and radius R are separated by a distance 3R. The force of attraction between them is proportional to

A uniform ring of mass m and radius 3a is kept above a sphere of mass M and radius 3a at a distance of 4a (as shown in figure) such that line joining the centres of ring and sphere is perpendicular to the plane of the ring. Find the force of gravitational attraction between the ring and the sphere.

A uniform ring of mass m and radius 3a is kept above a sphere of mass M and radius 3a at a distance of 4a (as shown in figure) such that line joining the centres of ring and sphere is perpendicular to the plane of the ring. Find the force of gravitational attraction between the ring and the sphere.

A shell of mass M and radius R has another point mass m placed at a distance r from its centre (r gt R) . The force of attraction between the shell and point mass is :

A uniform ring of mass M and radius R is placed directly above a uniform sphere of mass 8M and of same radius R. The centre of the ring is at a distance of d = sqrt(3)R from the centre of the sphere. The gravitational attraction between the sphere and the ring is

A uniform ring of mas m and radius a is placed directly above a uniform sphere of mass M and of equal radius. The centre of the ring is at a distance sqrt3 a from the centre of the sphere. Find the gravitational force exerted by the sphere on the ring.

A uniform ring of mas m and radius a is placed directly above a uniform sphere of mass M and of equal radius. The centre of the ring is at a distance sqrt3 a from the centre of the sphere. Find the gravitational force exerted by the sphere on the ring.

A uniform ring of mas m and radius a is placed directly above a uniform sphere of mass M and of equal radius. The center of the ring is at a distance sqrt3 a from the center of the sphere. Find the gravitational force exerted by the sphere on the ring.