Home
Class 11
MATHS
If sinalpha=3/(sqrt(73)),cosbeta=11/(sq...

If `sinalpha=3/(sqrt(73)),cosbeta=11/(sqrt(146))` where `alpha,beta in [0,pi/2]` then `(alpha+beta)` is equal to-

Promotional Banner

Similar Questions

Explore conceptually related problems

Let (sqrt(2)sin alpha)/sqrt(1+cos 2alpha)=1/7 and sqrt((1-cos2 beta)/2)=1/sqrt(10) where alpha,beta in (0,pi/2) . Then tan(alpha+2beta) is equal to

Let (sqrt(2)sin alpha)/sqrt(1+cos 2alpha)=1/7 and sqrt((1-cos2 beta)/2)=1/sqrt(10) where alpha,beta in (0,pi/2) . Then tan(alpha+2beta) is equal to

If tan alpha=(1)/(7) and sin beta=(1)/(sqrt(10)), where 0

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) where alpha,beta in[0,(pi)/(2)], then tan(alpha+2 beta)tan(2 alpha+beta) is equal to

sinalpha=1/(sqrt(10))*sinbeta=1/(sqrt(5)) (where alpha,beta and alpha+beta are positive acute angles). show that alpha+beta = pi/4

csc^(2)(alpha+beta)-sin^(2)(beta-alpha)+sin^(2)(2 alpha-beta)=cos^(2)(alpha-beta) where alpha,beta in(0,(pi)/(2)), then sin(alpha-beta) is equals

If sinalpha=(1)/(3) and cosbeta=(4)/(5), " then find " sin(alpha+beta) .

If 5 sinalpha=3"sin"(alpha+2beta)!=0, then tan(alpha+beta) is equal to

sin^(4)alpha+4cos^(4)beta+2=4sqrt(2)sin alpha cos beta;alpha,beta in[0,pi], then cos(alpha+beta)-cos(alpha-beta) is equal to :