Home
Class 12
MATHS
sqrt(1+ sin A) = -(sin\ A/2 + cos\ A/2) ...

`sqrt(1+ sin A) = -(sin\ A/2 + cos\ A/2)` is true if

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(1+sinA)=-(sin(A/2)+cos (A/2)) is true if :

If sqrt(1- sin A)= sin "" A/2 - cos "" A/2 could lie in quadrant

If sqrt(1+ sin A )-sqrt(1-sin A )=2 cos""(A)/(2) , then value of A can be

If sqrt(1+ sin A )-sqrt(1-sin A )=2 cos""(A)/(2) , then value of A can be

sqrt(cos 2x) + sqrt(1 + sin 2x) = 2sqrt(sin x + cos x) if

In the formula 2cos((A)/(2))=+-sqrt(1+sin A)+-sqrt(1-sin A) if two positive signs are taken

tan ""A/2 is equal to.............. A) sqrt((1- sin A)/( 1+ sin A)) B) sqrt((1+ sin A)/(1- sin A)) C) sqrt((1 -cos A)/(1 + cos A)) D) sqrt((1 +cos A)/(1- cos A))

If 2cos(A/2)=sqrt(1+sin A)+sqrt(1-sin A) ,then (A)/(2) lies between

If sqrt2 cos A = cos B + cos^(3) B "and" sqrt2 sin A = sin B - sin^(3) B, "then the value of" sin (A - B) "will be"

Prove that: (sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = (2)/(sin^(2)A-cos^(2)A)=(2)/(2sin^(2)A-1)=(2)/(1-2 cos^(2)A) .