Home
Class 11
MATHS
(tan) (11pi)/3 (-2 sin) (4pi)/6 - 3/4 (c...

`(tan) (11pi)/3 (-2 sin) (4pi)/6 - 3/4 (cosec^2) pi/4 +(4cos^2) (17pi)/6 = (3-4sqrt3)/2`

Text Solution

Verified by Experts

`tan((11pi)/3) = tan((9pi+2pi)/3) = tan(3pi+(2pi)/3) = tan(pi+(2pi)/3) = tan((2pi)/3) = -sqrt3`
`sin((4pi)/6) = sin((2pi)/3) = sqrt3/2`
`cosec^2(pi/4) = (sqrt 2)^2 = 2`
`cos^2((17pi)/6) = cos^2((18pi-pi)/6) = cos^2(3pi-pi/6) = cos^2(pi-pi/6) = (-sqrt3/2)^2 = 3/4`
So, putting these values in the given expression,
`-sqrt3-2*sqrt3/2-3/4*2+4*3/4 = -2sqrt3+3/2 = 1/2(3-4sqrt3) `
which is the desired value.
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (a) cos510^(@) sin510^(@) + sin(-330^(@)) cos(-390^(@))=0 b) tan(11pi)/(3) -2sin(9pi)/3-3/4"cosec"^(2)pi/4 + 4cos^(2)(17pi)/6=(3-2sqrt(3))/2

Prove that: (a) cos510^(@) sin510^(@) + sin(-330^(@)) cos(-390^(@))=0 b) tan(11pi)/(3) -2sin(9pi)/3-3/4"cosec"^(2)pi/4 + 4cos^(2)(17pi)/6=(3-2sqrt(3))/2

Prove that : tan((11pi)/3)-2sin((9pi)/3)-3/4cosec^2(pi/4)+4cos^2((17pi)/6)=(3-2sqrt(3))/2

Prove tan((11pi)/(3))-2sin((4pi)/(6))-((3)/(4))cosec^(2)((pi)/(4))+4cos^(2)((17pi)/(6)) = (3-4sqrt(3))/(2)

(tan (11 pi)) / (3) -2 (sin (2 pi)) / (3) - (3) / (4) csc ^ (2) (pi) / (4) +4 (cos ^ ( 2) (17 pi)) / (6)

tan ((11 pi) / (3)) - 2sin ((9 pi) / (3)) - (3) / (4) cos ec ^ (2) ((pi) / (4)) + 4cos ^ ( 2) ((17 pi) / (6)) = (3-2sqrt (3)) / (2)

2 sin ^(2) "" (pi)/(6) + cosec ^(2) "" (7pi)/(6) cos ^(2) "" (pi)/(3) = 3/2

2 sin ^(2) "" (pi)/(6) + cosec ^(2) "" (7pi)/(6) cos ^(2) "" (pi)/(3) = 3/2

2 sin ^(2) "" (pi)/(6) + cosec ^(2) "" (7pi)/(6) cos ^(2) "" (pi)/(3) = 3/2

2 sin ^(2) "" (pi)/(6) + cosec ^(2) "" (7pi)/(6) cos ^(2) "" (pi)/(3) = 3/2