Home
Class 12
MATHS
The orthogonal projection of bar a=2 ba...

The orthogonal projection of `bar a=2 bar i+ 3 bar j+3bar k` on `barb = bar i-2 bar j+bar k` (where `bari*barj*bark` are unit vectors along there mutually perpendicular directions is

Promotional Banner

Similar Questions

Explore conceptually related problems

The orthogonal projection of bar(a)=2i+3j+3k on bar(b)=i-2j+k is

Let bar a = 2 bari + 4 bar j - 5 bark, bar b= bar i + bar j + bar k and bar c = bar j + 2 bar k . Find the unit vector in the opposite direction of bar a + bar b + bar c .

Let bar(a) = 2bar(i) +4bar(j)-5bar(k), bar(b) = bar(i)+bar(j)+bar(k), bar(c ) = bar(j)+2bar(k) . Find the unit vector in the opposite direction of a + b + c

If bar a = 2 bar I + bar j - bar k, bar b = - bari + 2 bar j - 4 bar k and bar c = bar I + bar j + bar k , then find ( bar a xx bar b) cdot (bar b xx bar c) .

If bar(a)=2bar(i)-3bar(j)+5bar(k),bar(b)=-bar(i)+4bar(j)+2bar(k) then find bar(a)timesbar(b) and unit vector perpendicular to both bar(a) and bar(b) .

Prove that vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) -bar(3j)-5bar(k) and bar(c ) = 3bar(i) - 4bar(j) -4bar(k) are coplanar.

If bar(a)=2bari+4barj-5bark,bar(b)=bar(i)+bar(j)+bar(k)and bar(c)=bar(j)+2bar(k) . Find the unit vector in the opposite direction of bar(a)+bar(b)+bar(c) .