Home
Class 11
MATHS
If x, y, z are all different real number...

If `x, y, z` are all different real numbers, then prove that `1/(x-y)^2+1/(y-z)^2+1/(z-x)^2=(1/(x-z)+1/(y-z)+1/(z-x))^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x ,y ,z are all different real numbers, then 1/((x-y)^2)+1/((y-z)^2)+1/((z-x)^2)=(1/(x-y)+1/(y-z)+1/(z-x))^2

If x , y , z are all different real numbers, then 1/((x-y)^2)+1/((y-z)^2)+1/((z-x)^2)=(1/(x-y)+1/(y-z)+1/(z-x))^2

If x , y , z are all different real numbers, then 1/((x-y)^2)+1/((y-z)^2)+1/((z-x)^2)=(1/(x-y)+1/(y-z)+1/(z-x))^2

If x,y,z are all different real numbers,then (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

If x,y,z are all different real numbers,then (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

If x,y,z are distinct real numbers then the value of ((1)/(x-y))^(2)+((1)/(y-z))^(2)+((1)/(z-x))^(2) is

(1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

If x,y,z are positive real numbers, prove that: sqrt(x^-1 y).sqrt(y^-1z).sqrt(z^(-1)x)=1

Prove that : =|{:(1,1,1),(x,y,z),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

Show that |(1,1,1),(x,y,z),(x^(2),y^(2),z^(2))|=(x-y)(y-z)(z-x)