Home
Class 11
MATHS
int(dx)/(x^(2010)(1+x^(2010))^(1/2010))=...

`int(dx)/(x^(2010)(1+x^(2010))^(1/2010))=- 1/a(1+x^(-b))^((c-2)/b)+k` then

Promotional Banner

Similar Questions

Explore conceptually related problems

For x!=0,+-1, the expression (((1)/(x^(2007))-(1)/(x^(2009)))/((1)/(x^(2008))-(1)/(x^(2010)))) is

The factor of (x^(2010)+y^(2010))^(2010!)-(x^(2009!))^(2010^(2))-(y^(2009!))^(2010^(2)) is: a.x^(2009)b.y^(2009)c.(xy)^(2009!)d.(xy)^(2010)

If int(dx)/(x+x^(2011))=f(x)+C_(1) and int(x^(2009))/(1+x^(2010))dx=g(x)+C_(2) (where C_(1) and C_(2) are constants of integration).Let h(x)=f(x)+g(x) .If h(1)=0 then h(e) is equal to

If int(dx)/(x+x^(2011))=f(x)+C_(1) and int(x^(2009))/(1+x^(2010))dx=g(x)+C_(2) (where C_(1) and C_(2) are constants of integration).Let h(x)=f(x)+g(x) .If h(1)=0 then h(e) is equal to

If int(dx)/(x+x^(2011))=f(x)+C_(1) and int(x^(2009))/(1+x^(2010))dx=g(x)+C_(2) where C_(1) and C_(2) are constants of integration.Let h(x)=f(x)+g(x) . If h(1)=0 then h(e) is equal to

If int(dx)/(x+x^(2011))=f(x)+C_(1) and int(x^(2009))/(1+x^(2010))dx=g(x)+C_(2) (where C_(1) and C_(2) are constants of integration). Let h(x)=f(x)+g(x). If h(1)=0 then h(e) is equal to :

int_(8)^(2010)(cos^(2018)x)/(cos^(2018)x+cos(2018-x)^(2018))dx

(3+x^(2008)+x^(2009))^(2010)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(n)x^(n) then the value of a_(0)-(1)/(2)a_(1)-(1)/(2)a_(2)+a_(3)-(1)/(2)a_(4)-(1)/(2)a_(5)+a_(6)-... is 3^(2010) b.1 c.2^(2010)d ,none of these

int(dx)/((1+sqrt(x))^(2010))=2[(1)/(alpha(1+sqrt(x))^(alpha))-(1)/(beta(1+sqrt(x))^(beta))]+c where alpha,betagt0 then alpha-beta is a)1 b)2 c) -1 d) -2