Home
Class 12
MATHS
In a A B C ,if|1 1 1 1+cosA1+cosB1+cosC...

In a ` A B C ,if|1 1 1 1+cosA1+cosB1+cosCcos^2A+cosBcos^2A+cosBcos^2+cosC|=0` show that ` A B C` is an isosceles.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a A B C ,if|1 1 1 1+cosA 1+cosB 1+cosC cos^2A+A cos^2B+cosB cos^2C+cosC|=0 show that A B C is an isosceles.

cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB cosC .

If A+B+C=0 , Prove : cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB cosC .

If A+B+C=0 , Prove : cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB cosC .

If A+B+C=pi , prove that : cos2A+cos2B+cos2C=-1-4cosA cosB cosC

If A+B+C=180^0 , prove that : cos^2 A + cos^2 B + cos^2 C + 2cosA cosB cosC=1 .

If A+B+C=180^@ , then prove that cos2A + cos2B +cos2C=-1-4cosA cosB cosC .

Using properties of determinants, show that ABC is isosceles if |(1,1,1),(1+cosA,1+cosB,1+cosC),(cos^2A+cosA,cos^2B+cosB,cos^2C+cosC)|=0

Using properties of determinants, show that ABC is isosceles if |(1,1,1),(1+cosA,1+cosB,1+cosC),(cos^2A+cosA,cos^2B+cosB,cos^2C+cosC)|=0