Home
Class 12
MATHS
If O is the circumcentre, G is the centr...

If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: `vec(OA) +vec(OB)+vec(OC)=vec(OO')`

Promotional Banner

Similar Questions

Explore conceptually related problems

If O( vec0 ) is the circumcentre and O' the orthocentre of a triangle ABC, then prove that i. vec(OA)+vec(OB)+vec(OC)=vec(OO') ii. vec(O'A)+vec(O'B)+vec(O'C)=2vec(O'O) iii. vec(AO')+vec(O'B)+vec(O'C)=2 vec(AO)=vec(AP) where AP is the diameter through A of the circumcircle.

If O is the circumcentre and P the orthocentre of Delta ABC , prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP) .

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC)=vec(0) .

If G be the centroid of the triangle ABC, then prove that vec(GA)+vec(GB)+vec(GC)=vec(0).

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC) = 0

If S is the circumcentre, G the centroid, O the orthocentre of Delta ABC, then vec(S)A + vec(S)B + vec(S)C =

G is the centroid of a triangle ABC, show that : vec(GA)+vec(GB)+vec(GC)=vec0 .