Home
Class 12
MATHS
f(x)={(k cos x)/(pi-2x), if x != pi/2 an...

`f(x)={(k cos x)/(pi-2x), if x != pi/2 and 3, if x = pi/2` at `x=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of k so that the function f is continuous at the indicated point : f(x)={(kcosx/(pi-2x),,,, if x ne pi/2),(3,,,, if x=pi/2):} at x=pi/2

Let f(x)=(k cos x)/(pi-2x) if x!=(pi)/(2) and f(x=(pi)/(2)) if x=(pi)/(2) then find the value of k if lim_(x rarr(pi)/(2))f(x)=f((pi)/(2))

Find the values of k so that the function fis continuous at the indicated point in f(x)={((k cos x)/(pi-2x),quad if x!=(pi)/(2)),(3 if x=(pi)/(2)) at x=(pi)/(2)

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

For f(x)=(k cos x)/(pi-2x), if x!=(pi)/(2),3, if x=(pi)/(2) then find the value of k so that f is continous at x=(pi)/(2)

Determine the value of k, if f(x) = {((kcosx)/(pi-2x),if x!=(pi)/2),(3,if x = (pi)/2):}

Find the value of k so that the function f defined by f(x)={(kcosx)/(pi-2x),3 , "if" x !=pi/2"if" x=pi/2 is continuous at x=pi/2

Find the value of k so that the function f defined by f(x)={(kcosx)/(pi-2x), "if"\ \ x\ !=pi/2" 3,if"\ x=pi/2 is continuous at x=pi/2

Find k if the function is continuous at x=(pi)/(2) if (a) f(x)={{:((k cos x )/(pi-2x),x ne (pi)/(2)),(3,if x=(pi)/(2)):} at x=(pi)/(2) (b) f(x)={{:(kx+1, if x le 2),(cos x,if x gt 2):} at x=2 (c ) if f(x)={{:(k^(2)x-k,if x le 1),(2 , if x lt 1):} is continous on R then find the value (s) of k