Home
Class 12
MATHS
[" If the normals of the parabola "y^(2)...

[" If the normals of the parabola "y^(2)=4x" drawn at the end points of its latus rectum are tangents to "],[" the circle "(x-3)^(2)+(y+2)^(2)=r^(2)," then the value of "r^(2)" is "quad " [JEE ADVANCED- "2015]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the normals of the paralbola y^2=4x drawn at the end points of its latus rectum are tangents to the circle (x-3)^(2) + (y+2)^(2) = r^(2) then the value of r^(2) is

If the normals of the parabola y^(2)=4x drawn at the end points of its latus rectum are tangents to the circle (x-3)^(2)+(y+2)^(2)=r^(2) , then the value of r^(4) is equal to

If the normals of the parabola y^(2)=4x drawn at the end points of its latus rectum are tangents to the circle (x-3)^(2)+(y+2)^(2)=r^(2) , then the value of r^(4) is equal to

If the normals of the parabola y^2=4x drawn at the end points of its latus rectum are tangents to the circle (x-3)^2+(y+2)^2=r^2 is

·If the normals of the parabola y^2=4x drawn at the end points of its latus rectum are tangents to the circle (x-3)^2 (y+2)^2=r^2 , then the value of r^2 is

·If the normals of the parabola y^2=4x drawn at the end points of its latus rectum are tangents to the circle (x-3)^2 (y+2)^2=r^2 , then the value of r^2 is

Find the equations of normal to the parabola y^2=4a x at the ends of the latus rectum.

Find the equations of normal to the parabola y^2=4a x at the ends of the latus rectum.

Find the equations of normal to the parabola y^2=4a x at the ends of the latus rectum.