Home
Class 12
MATHS
lim(x->a)(x^n-a^n)/(x-a)=n*a^(n-1)...

`lim_(x->a)(x^n-a^n)/(x-a)=n*a^(n-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any positive integer n, lim_(xtoa)(x^(n)-a^(n))/(x-a)=na^(n-1)

(lim)_(x->a)(x^n-a^n)/(x-a) is equal to a. n a^n b . n a^(n-1) c. n a d. 1

If lim_(x->2)(x^n-2^n)/(x-2)=80 and n in N ,then find the value of n.

The value of lim_(xrarra)(x^n-a^n)/(x-a) is ………

lim_(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^(n-1)

If lim_(x rarr 3)(x^n-3^n)/(x-3)=108 , and n in N , find n.

(lim_(x rarr a)(x^(n)-a^(n))/(x-a) is equal to na^(n)b*na^(n-1) c.nad.1

lim_(x rarr oo) (x^(n)+a^(n))/(x^(n)-a^(n))= ________.

(i) lim_(xrarra) (x^(m)-a^(m))/(x^(n)-a^(n)) (ii) lim_(xrarra) ((1+x)^(1//n)-1)/(x)