Home
Class 11
MATHS
The two legs of a right triangle are sin...

The two legs of a right triangle are `sin theta +sin ((3pi)/2-theta)` and `cos theta -cos( (3pi)/2-theta)` The length of its hypotenuse is hypotenuse is

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of hypotenuse and one side of a right -angle triangle are [3+2 (sin theta+ cos theta)] and [2(1+ sin theta)+cos theta)] respectively, show that the lengths of the other side of the triangle is [ 2(1+cos theta)+ sin theta]

Find the values of cos theta and tan theta when sin theta =-3/5 and pi < theta < (3pi)/2

Find the values of cos theta and tan theta when sin theta =-3/5 and pi < theta < (3pi)/2

If sin (pi cos theta) = cos (pi sin theta). Find sin (2 theta)

If sin(pi cos theta)=cos(pi sin theta), then sin2 theta=

If sin(pi cos theta)=cos(pi sin theta) then sin2theta=

If 0 lt theta lt pi/2 and sin 2 theta = cos 3 theta, then the value of sin theta is-

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to