Home
Class 11
MATHS
A variable line passes through a fixed p...

A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2,0), (0,2) and (1,1) on the line is zero. Find the coordinate of the point P.

Promotional Banner

Similar Questions

Explore conceptually related problems

A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.

If the algebraic sum of the perpendicular distances from the points (2, 0), (0, 2) and (1, 1) to a variable st. line be zero, then the line passes thro' the point :

The algebraic sum of the perpendicular distances from the points A(-2,0),B(0,2) and C(1,1) to a variable line be zero,then all such lines

If the algebraic sum of the perpendicular distances from the points (2,0),(0,2),(4,4) to a variable line is equal to zero. Then the line passes through the point.

If the algebraic sum of the distances from the points (2,0), (0, 2) and (1, 1) to a variable line be zero then the line passes through the fixed point.

If the algebraic sum of the perpendicular distances from the points (2.0)(0,2) and (4.4) to a variable line is ' ^(prime0) ' then the line passes through the fixed point

The algebric sum of perpendicular distnaces from the points (0,2),(2,0) and (1,1) to a variable straight lines is zero. Show that the line passes through a fixed point.

If the algebraic sum of the perpendicular distances of the points (4,0),(0,4) and (2,2) form a variable straight line is zero.The line passes through a fixed point (p,q) then 3p+q=