Home
Class 11
MATHS
Let F(x)=(1+sin(pi/(2k))(1+sin(k-1)pi/(...

Let `F(x)=(1+sin(pi/(2k))(1+sin(k-1)pi/(2k))(1+sin(2k+1)pi/(2k))(1+sin(3k-1)pi/(2k))`. The value of `F(1)+F(2)+F(3)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let p(k)=(1+cos((pi)/(4k)))(1+cos'((2k-1)pi)/(4k)) (1+cos""((2k+1)pi)/(4k))(1+cos""((4k-1)pi)/(4k)) , then

Let P(k) = (1+"cos"(pi)/(4k))(1+"cos"((2k-1)pi)/(4k))(1 + "cos" ((2k+1)pi)/(4k))(1+"cos"((4k-1)pi)/(4k)) . Then

lim_(n->oo)sum_(k=1)^n((sin)pi/(2k)-(cos)pi/(2k)-(sin)(pi/(2(k+2))+(cos)pi/(2(k+2)))=

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4)+((k-1)pi)/(6))sin((pi)/(4)+(kpi)/(6))) is equals to :

If minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is (pi^(2))/(k), then value of k is