Home
Class 11
MATHS
The value of 3(sin^4t+cos^4t-1)/(sin^6t+...

The value of `3(sin^4t+cos^4t-1)/(sin^6t+cos^6t-1)` is equal to __________

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 2(sin^6t+cos^6t-1)/(sin^4t+cos^4t-1) is equal to __________

The value of 3(sin^(4)t+cos^(4)t-1)/(sin^(6)t+cos^(6)t-1) is equal to

Find : ( Sin^4t + Cos^4t - 1 ) /( Sin^6t + Cos^6t -1 ) =

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

If sin t+cos t=(1)/(5) then tan((t)/(2)) is equal to:

x=3sin t-2 sin ^3t, y=3 cos t -2cos^3t

If x=A cos 4t+B sin4t, then (d^(2)x)/(dt^(2)) is equal to

If x=A cos 4t+B sin4t, then (d^(2)x)/(dt^(2)) is equal to

x=2 cos^2 t, y= 6 sin ^2 t

x = a (cos t + sin t), y = a (sin t-cos t)