Home
Class 12
MATHS
" If "x=t^(2)" and "y=t^(3)," then "(d^(...

" If "x=t^(2)" and "y=t^(3)," then "(d^(2)y)/(dx^(2))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=t^(2) and y=t^(3), find (d^(2)y)/(dx^(2))

If x=t^(2)andy=t^(3) , then (d^(2)y)/(dx^(2)) is equal to: a) (3)/(2) b) (3)/(2)t c) (3)/(2t) d) (3)/(4t)

If x = t^(2), y = t^(3) then (d^(2)y)/(dx^(2)) is

If x = t ^(2), y = t ^(3) then (d ^(2) y)/(dx ^(2)) =

If x=t^(3)+t+5 and y=sin t then (d^(2)y)/(dx^(2))

If x=t^(2),quad y=t^(3), then (d^(2)y)/(dx^(2))=3/2(b)3/4t(c)3/2t(d)3t/2

if x=log_(e)t,t>0 and y+1=t^(2) then (d^(2)y)/(dx^(2))

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is