Home
Class 12
MATHS
[" Show that the derivative of "(sqrt(1+...

[" Show that the derivative of "(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))" w.r.t."sqrt(1-x^(4))],[" is "(sqrt(1-x^(4))-1)/(x^(6))]

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))) w.r.t. cos^(-1)x^(2) .

If y="tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) show that, (dy)/(dx)=(x)/(sqrt(1-x^(4)))

Differentiate tan^-1{( sqrt (1+x^2) +sqrt (1-x^2))/ (sqrt(1+x^2)-sqrt(1-x^2))} w.r.t.x

Show that : Lt_(x to 0)(sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1+x^(2))-sqrt(1-x))=1

5^(sqrt(x^(2)+1))+(sqrt(x^(2)+1))^(5) w.r.t.x

Find the derivatives w.r.t. x : sqrt(1+sin x)+sqrt((1-x^(2))/(1+x^(2)))

Show that : tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=pi/4+1/2cos^(-1)x^(2) .

Differentiatie tan^-1((sqrt(1+x^2) - sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) w.r.t. sin^-1((2x)/(1+x^2))