Home
Class 12
MATHS
If cos^(-1)x+cos^(-1)y=theta show that x...

If `cos^(-1)x+cos^(-1)y=theta` show that `x^2-2xycostheta+y^2=sin^2theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y= theta , show that x^2-2xycos theta+y^2 = sin^2 theta .

If cos ^(-1) x+ cos ^(-1) y= theta , show that x^(2)-2xycos theta +y^(2)=sin ^(2) theta

If cos^-1 x+cos^-1 y=theta , prove that x^2+y^2-2xycostheta=sin^2theta

If sin^-1 x+sin^-1 y=theta , prove that x^2+y^2+2xycostheta=sin^2theta

Prove the followings : If "cos"^(-1)x/2+"cos"^(-1)y/3=theta then 9x^(2)-12xycostheta+4y^(2)=36sin^(2)theta .

If cos^(-1)(x/2)+cos^(-1)(y/3) = theta , prove that 9x^2- 12xycostheta+ 4y^2= 36 sin^(2)theta

If Cos^(-1)(x//2)+Cos^(-1)(y//3)=theta" then "9x^(2)-12xycostheta+4y^(2)=

If cos^-1 (x/2)+cos^-1(y/3)=theta, then (x^2-12xycostheta+4y^2= (A) 36 (B) -36sin^2theta (C) 36sin^2theta (D) 36cos^2theta

If "cos"^(-1)(x/y) +"cos"^-1(y/3)= theta, "prove that" 9x^2- 12xy "cos" theta +4y^2 =36 "sin"^2 theta .