Home
Class 11
MATHS
[" The definition of fog,if "f(x)=sin^(-...

[" The definition of fog,if "f(x)=sin^(-1)x,],[g(x)=x^(2)" is..."]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find fog and gof , if f(x)=sin^(-1)x , g(x)=x^2

Find fog and gof , if f(x)=sin^(-1)x , g(x)=x^2

Find fog and gof if: f(x)=sinx,g(x)=x^(2)

Find fog and gof if: f(x)=sinx,g(x)=x^(2)

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

Find fog and gof , if f(x)=x+1 , g(x)=sinx

Find fog and gof , if f(x)=x+1 , g(x)=sinx

Find fog and gof , if f(x)=x^2 , g(x)=cosx