Home
Class 12
MATHS
tan^(- 1)(1-x)/(1+x)=1/2sin^(- 1)x/(sqrt...

`tan^(- 1)(1-x)/(1+x)=1/2sin^(- 1)x/(sqrt(1+x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)sqrt((1-x)/(1+x))+sin^(-1)2x sqrt(1-x^(2))=(5 pi)/(12) if x=

Prove that tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt(1+x^(2))*sqrt(1+y^(2))))

Prove the following "tan"^(-1)((1-x)/(1+x))-"tan"^(-1)((1-y)/(1+y))="sin"^(-1)((y-x)/(sqrt(1+x^(2))sqrt(1+y^(2)))) .

tan ^(-1)""(1-x)/(1+x)""=(1)/(2) sin ^(-1)""(x)/(sqrt(1+x^(2)))

solve : tan^(-1) sqrt(x(x+1))+sin ^(-1) (sqrt(1+x+x^(2)))=(pi)/(2)

Prove that sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))

Prove that sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))

Prove that sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))

Prove that sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))

int (tan (sin^(-1)x))/(sqrt(1-x^(2)))dx=