Home
Class 12
MATHS
sin x+sin^(2)x=1rArr cos^(12)x+3cos^(10)...

sin x+sin^(2)x=1rArr cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x+2cos^(4)x+cos^(2)x-2=

Promotional Banner

Similar Questions

Explore conceptually related problems

if sin x+sin^(2)x=1 then cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x=

If sinx + sin^(2)x =1 then cos^(12)2x + 3cos^(10)x+3cos^(8)x + cos^(6)x =

If sin^(2)x+sin x=1 then cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1=

If sin x + sin^(2)x=1 then prove that cos^(12) x+3 cos^(10) x+ 3 cos^(8) x+ cos^(6) x=1 .

If sin x+sin^(2)=1, then cos^(8)x+2cos^(6)x+cos^(4)x=

if sin x +sin^2 x = 1 then cos^12 x+ 3 cos^10 x + 3 cos^8 x + cos ^6 x =

If sinx +sin^(2)x=1 then the value of cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-2 is equal to

If sin x+sin^(2)x=1, then find the value of cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx