Home
Class 12
MATHS
" If "y=(sqrt(x))^((sqrt(x))^((sqrt(x)))...

" If "y=(sqrt(x))^((sqrt(x))^((sqrt(x))))," show that,"x(dy)/(dx)=(y^(2))/(2-y log x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sqrt(x))^(sqrt(x)^(sqrt(x))...oo), show that (dy)/(dx)=(y^(2))/(x(2-y log x))

If y=(sqrt(x))^((sqrt(x))^((sqrt(x))^(...oo) , show that, x (dy)/(dx)=(y^(2))/(2-y log x).

If y=(sqrt(x))^((sqrt(x))^((sqrt(x))^(...oo) , show that, x (dy)/(dx)=(y^(2))/(2-y log x).

If y=sqrt(x)^(sqrt(x)^(sqrt(x)^dotoo)) , show that (dy)/(dx)=(y^2)/(x(2-ylogx)) .

If y=(sqrt(x))^(sqrt(x))hat sim(((sqrt(x))dot oo)), show that (dy)/(dx)=(y^(2))/(x(2-y log x))

If (sqrt(x))^((sqrt(x))^((sqrt(x))^(...oo))) and x(dy)/(dx) =(f(y))/( 2-y log x) , then the value of f(y) is -

If y=sqrt(x)^(sqrt(x)^(sqrtx...oo)) then prove that dy/dx=(y^2)/(x(2-y log x )).

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))