Home
Class 11
MATHS
" 23."Lt(sqrt(pi)-sqrt(2sin^(-1)x))/(sqr...

" 23."Lt(sqrt(pi)-sqrt(2sin^(-1)x))/(sqrt(1-x))=(" Mains "-2019)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1^(-))(sqrt(pi)-sqrt(2sin^(-1)x))/(sqrt(1-x))=(A)sqrt((2)/(pi))(B)sqrt((pi)/(2))(C)(1)/(pi)(D)sqrt((1)/(pi))

Lt_(x to-1) ((sqrt(pi))-sqrt(cos^(-1)x))/(sqrt(x+1))=

lim_(xrarr1^(-)) (sqrtpi-sqrt(2sin^-1x))/sqrt(1-x)= (A) sqrt(2/pi) (B) sqrt(pi/2) (C) 1/pi (D) sqrt(1/pi)

Number ofsolution(s) ofthe equation cos^(-1)sqrt(x)-sin^(-1)sqrt(x-1)+cos^(-1)sqrt(1-x)-sin^(-1)((1)/(sqrt(x)))=(pi)/(2)

If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin x)]] where 0 lt x lt pi/2 find (dy)/(dx)

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-sin x))/(sqrt(1+x)-sqrt(1-sin x)))=(pi)/(4)-(1)/(2)cos^(-1),-(1)/(sqrt(2))<=x<=1

show that , cot ^(-1) {(sqrt(1+sin x)+sqrt(1- sin x))/( sqrt(1+sin x)- sqrt(1-sin x))}=(x)/(2),0 lt x lt (pi)/(2)

Prove that cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), 0 lt x lt (pi)/(2), or x in (0, (pi)/(4)) .

If x in(pi,(3 pi)/(2)) then the value of tan^(-1)((sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x)))