Home
Class 12
MATHS
[" (58.let "alpha,beta," be the roots of...

[" (58.let "alpha,beta," be the roots of the roots of "],[" the quadratic equation "ax2+bx+c=0],[" and "Delta=b2-4ac" .If "alpha+beta,alpha2+beta2],[alpha3+beta3" are in "G.P" ,then: "],[" (a) "Delta=0" (b) "Delta!=0" (c) "b Delta=0" (d) "c Delta=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha,beta be the roots of the quadratic equation a x^2+b x+c=0and Delta =b^2-4ac cdotIfalpha+beta,alpha^2+beta^2,alpha^3+beta^3 are in G.P. Then a. Delta!=0 b. bDelta=0 c. cDelta =0 d. Delta =0

Let alpha,beta be the roots of the quadratic equation a x^2+b x+c=0 and delta=b^2-4a cdot If alpha+beta,alpha^2+beta^2alpha^3+beta^3 are in G.P. Then a. =0 b. !=0 c. b =0 d. c =0

Let alpha,beta be the roots of the quadratic equation a x^2+b x+c=0 and delta=b^2-4a cdot If alpha+beta,alpha^2+beta^2alpha^3+beta^3 are in G.P. Then a. =0 b. !=0 c. b =0 d. c =0

In the quadratic equation ax^2+bx+c=0,Delta = b^2-4ac and alpha+beta,alpha^2+beta^2,alpha^3+beta^3, are in G.P , where alpha,beta are the roots of ax^2+bx+c, then (a) Delta != 0 (b) bDelta = 0 (c) cDelta = 0 (d) Delta = 0

Let alpha,beta be the roots of the quadratic equation ax^(2)+bx+c=0and=b^(2)-4a*If alpha+beta,alpha^(2)+beta^(2)alpha^(3)+beta^(3) are in G.P.Then a.=0 b.!=0 c.b=0 d.c=0

If alpha,beta are the roots of the quadratic equation ax^(2)+bx+c=0 then alpha beta =

In the quadratic equation ax^2 + bx + c = 0 . if delta = b^2-4ac and alpha+beta , alpha^2+beta^2 , alpha^3+beta^3 are in G.P. and alpha,beta are the roots of ax^2 + bx + c =0

In the quadratic equation ax^2 + bx + c = 0 , if Delta = b^2-4ac and alpha + beta, alpha^2 + beta^2, alpha^3 + beta^3 are in GP. where alpha, beta are the roots of ax^2 + bx + c =0 , then

Let f(x) = ax^(2) + bx + c, a != 0 and Delta = b^(2) - 4ac . If alpha + beta, alpha^(2) + beta^(2) and alpha^(3) + beta^(3) are in GP, then

Let f(x) = ax^(2) + bx + c, a != 0 and Delta = b^(2) - 4ac . If alpha + beta, alpha^(2) + beta^(2) and alpha^(3) + beta^(3) are in GP, then