Home
Class 12
MATHS
(dy)/(dx)=(3e^(2x)+3e^(4x))/(e^(x)+e^(-x...

(dy)/(dx)=(3e^(2x)+3e^(4x))/(e^(x)+e^(-x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (d)/(dx)(x(e^(x)+e^(4x))/(e^(x)+e^(-2x))) .

(dy)/(dx)=(e^(2x)+1)/(e^(x))

(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))

(dy)/(dx) =y ((e^(3x)-e^(-3x))/(e^(3x) +e^(-3x)))

Solve the following differential equations. dy/dx=y((e^(3x)-e^(-3x))/(e^(3x)+e^(-3x)))

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

int(dx)/(e^(2x)-3e^(x))=

int(dx)/(e^(2x)-3e^(x))=

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

int(e^(3x)-e^(-3x))/(e^(3x)+e^(-3x))dx