Home
Class 12
MATHS
Let vec a,vec b ,vec c are unit vector ...

Let `vec a,vec b ,vec c` are unit vector where `|vec a-vec b|^2+|vecb-vec c|^2+|vec c+vec a|^2=3`, then `|vec a+2 vec b+3 vec c|^2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c are unit vector,prove that |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)<=9

If vec a , vec b , vec c are unit vector, prove that | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2lt=9.

If vec a, vec b, vec c are unit vectors then |vec a - vec b|^(2) + |vec b - vec c|^(2) + |vec c - vec a|^(2) does not exceed.

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

If vec a, vec b and vec c are unit vectors then | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) is equal to

If vec a,vec b,vec c are unit vectors such that vec a+vec b+ vec c= vec 0 , then the value of vec a *vec b +vec b* vec c+ vec c*vec a is equal to

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]