Home
Class 12
MATHS
lim(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^...

`lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nrarroo) {(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+...+(1)/(sqrt(n^(2)-(n-1)^(2)))} is equal to-

lim_(nrarroo)((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+....+(1)/(sqrt(n^(2)-(n-1)^(2)))) is equal to

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))

lim_ (n rarr oo) ((sqrt (n ^ (2) + n) -1) / (n)) ^ (2sqrt (n ^ (2) + n) -1)

lim_(n rarr oo)(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)+1))+(1)/(sqrt(n^(2) +2))+...(.1)/(sqrt(n^(2)+2n))=

The value of lim_(nto oo)(1/(sqrt(n^(2)))+1/(sqrt(n^(2)+1))+…..+1/(sqrt(n^(2)+2n))) is

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is

The value of lim_(n rarr oo)(1/sqrt(4n^(2)-1)+1/sqrt(4n^(2)-4)+...+1/sqrt(4n^(2)-n^(2))) is -

lim_(nto oo)1/n+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+...(1)/(sqrt(n^(2)+(n-1)n)) is equal to

Evaluate: ("lim")_(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))