Home
Class 12
MATHS
z0 is a root of the equation z^ncos[th...

z0 is a root of the equation `z^ncos[thetao]`+`z^[n-1]cos[theta1]`+`z^[n-2]cos[theta2]`+.......+`z^ncos[theta[n-1]]+costheta[n]`=2 where `Theta[i] in R` then

Promotional Banner

Similar Questions

Explore conceptually related problems

zo is one of the roots of the equation z^n cos theta0+ z^(n-1) cos theta2 +. . . . . . + z cos theta(n-1) + cos theta(n) = 2, where theta in R , then (A) |z0| 1/2 (C) |z0| = 1/2

zo is one of the roots of the equation z^n cos theta_0+ z^(n-1) cos theta_2 +. . . . . . + z cos theta_(n-1) + cos theta_(n) = 2 , where theta in R , then (A) |z_0| lt 1/2 (B) |z_0| gt 1/2 (C) |z_0| = 1/2 (D)None of these

zo is one of the roots of the equation z^n cos theta_0+ z^(n-1) cos theta_1 +. . . . . . + z cos theta_(n-1) + cos theta_(n) = 2 , where theta in R , then (A) |z_0| lt 1/2 (B) |z_0| gt 1/2 (C) |z_0| = 1/2 (D)None of these

zo is one of the roots of the equation z^(n)cos theta0+z^(n-1)cos theta2+......+z cos theta(n-1)+cos theta(n)=2, where theta in R, then (A)|z0| (1)/(2)(C)|z0|=(1)/(2)

All the roots of equation z^n costgheta_0 +z^(n-1) costheta_1 +z^(n-2) costheta_2+…+costheta_n=2, when theta_0, theta_1, theta_2, ……theta_n epsilon R lie (A) on the line Re[(3+4i)z]=0 (B) inside the circel |z|=1/2 (C) outside the circle |z|= 1/2 (D) on the circle |z|= 1/2

If (2^n+1)theta=pi then 2^n costheta cos2theta cos2^2 theta .......cos 2^(n-1) theta=

If z=sin theta-i cos theta then for any integer n

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)