Home
Class 12
MATHS
1,z1, z2,z3,.....,z(n-1), are the nth ro...

`1`,`z_1`, `z_2`,`z_3`,.....,`z_(n-1)`, are the nth roots of unity, then `(1-z_1)(1-z_2)...(1-z_(n-1))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1,z_1z_2,……z_(n-1) are the n^th roots of unity, then (1-z_1)(1-z_2)…..(1-z_(n-1))= .

Let 1, z_(1),z_(2),z_(3),…., z_(n-1) be the nth roots of unity. Then prove that (1-z_(1))(1 - z_(2)) …. (1-z_(n-1))= n . Also,deduce that sin .(pi)/(n) sin.(2pi)/(pi)sin.(3pi)/(n)...sin.((n-1)pi)/(n) = (pi)/(2^(n-1))

Let 1, z_(1),z_(2),z_(3),…., z_(n-1) be the nth roots of unity. Then prove that (1-z_(1))(1 - z_(2)) …. (1-z_(n-1))= n . Also,deduce that sin .(pi)/(n) sin.(2pi)/(pi)sin.(3pi)/(n)...sin.((n-1)pi)/(n) = (pi)/(2^(n-1))

Let 1, z_(1),z_(2),z_(3),…., z_(n-1) be the nth roots of unity. Then prove that (1-z_(1))(1 - z_(2)) …. (1-z_(n-1))= n . Also,deduce that sin .(pi)/(n) sin.(2pi)/(pi)sin.(3pi)/(n)...sin.((n-1)pi)/(n) = (pi)/(2^(n-1))

If 1,z_1 ​ ,z_2 ​ ,z_3 ​ ,...,z_(n−1) ​ are nth roots of unity, then show that (1−z_1 ​ )(1−z_2 ​ )...(1−z_(n−1) ​ )=n

If z_(1),z_(2),z_(3),…………..,z_(n) are n nth roots of unity, then for k=1,2,,………,n

If z_(1),z_(2),z_(3),…………..,z_(n) are n nth roots of unity, then for k=1,2,,………,n

If z_(1),z_(2),z_(3),…………..,z_(n) are n nth roots of unity, then for k=1,2,,………,n

If z_(1),z_(2),z_(3),…………..,z_(n) are n nth roots of unity, then for k=1,2,,………,n