Home
Class 12
MATHS
If k>0, |z|=\w\=k, and alpha=(z-bar w)/(...

If `k>0`, `|z|=\w\=k`, and `alpha=(z-bar w)/(k^2+zbar(w))`, then `Re(alpha)` (A) 0 (B) `k/2` (C) `k` (D) None of these

Text Solution

Verified by Experts

`alpha=(z-w)/(k^2+zw)=((z-w)(k^2+2w))/((k^2+2w)(k^2+2w))`
`=((z-w)(k^2+zw))/((k^2+2w)(k^2+zw))`
`=(k^2z-k^2w+|z|^2w-z|w|^2)/(|k^2|zw|^2)`
`=(k^2(z-z)+k^2(w-w))/(|k^2|zw|^2)`
`0+l^0*(2k^2ln(z)+ln(w))/(|k^2|zw|^2)`
`Re(alpha)=0`
option a is correct.
Promotional Banner

Similar Questions

Explore conceptually related problems

If k>0 , |z|=|w|=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If k>0 , |z|=|w|=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If k>0,|z|=|w|=k, and alpha=(z-bar(w))/(k^(2)+zbar(w))Re(alpha)

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

If |z|=k and w=(z-k)/(z+k) , then Re (w)=

If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition that ((w- bar w z)/(1-z)) is a purely real, then the set of values of z is |z|=1,z!=2 (b) |z|=1a n dz!=1 (c) z=bar z (d) None of these

If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition that ((w- bar w z)/(1-z)) is a purely real, then the set of values of z is |z|=1,z!=2 (b) |z|=1a n dz!=1 (c) z=bar z (d) None of these

If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition that ((w- bar w z)/(1-z)) is a purely real, then the set of values of z is |z|=1,z!=2 (b) |z|=1a n dz!=1 (c) z=bar z (d) None of these

If z in C , then Re(bar(z)^(2))= k^(2), k gt 0 , represents