Home
Class 12
MATHS
Let f(x) be a continous function on R. I...

Let `f(x)` be a continous function on `R`. If `int _0^1[f(x)-f(2x)]dx=5` and `int _0^2[f(x)-f(4x)]dx=10` then the value of `int _0^1[f(x)-f(8x)]dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_0^(a) f(x) dx = int_0^(a) f(a-x) dx , then the value of int_0^(pi) x. f(sin x) dx =

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

Property 5: If f(x) is a continuous function defined on [0;a] then int_(0)^(a)f(x)dx=int_(0)f(a-x)dx

If int_0^(a) f(2a-x) dx = mu and int_0^(a) f(x) dx = lambda , then int_0^(2a) f(x) dx =