Home
Class 12
MATHS
If x , y , z are natural numbers such th...

If `x , y , z` are natural numbers such that `cot^(-1)x+cot^(-1)y=cot^(-1)z` then the number of ordered triplets `(x , y , z)` that satisfy the equation is 0 (b) 1 (c) 2 (d) Infinite solutions

Promotional Banner

Similar Questions

Explore conceptually related problems

If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1)z then the number of ordered triplets (x , y , z) that satisfy the equation is (a)0 (b) 1 (c) 2 (d) Infinite solutions

If x,y,z are natural number such that cot^(-1)x+cot^(-1)y=cot^(-1)z then the number of ordered triplets (x,y,z) that satisfy the equation is

If x, y, z are natural numbers such that cot^(-1) x + cot^(-1)y= cot^(-1) z then the number of ordered triplets (x, y, z) that satisfy the equation is a)0 b)1 c)2 d)infinite solutions

If x,y,z are three natural numbers in A.P. such that x+y+z=30 , then the possible number of ordered triplet (x, y, z) is :

The number of ordered triplets (x,y,z) satisfy the equation (sin^(- 1)x)^2=(pi^2)/4+(sec^(- 1)y)^2+(tan^(- 1)z)^2

The number of ordered triplets (x,y,z) satisfy the equation (sin^(- 1)x)^2=(pi^2)/4+(sec^(- 1)y)^2+(tan^(- 1)z)^2

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

If x, y, z are integers such that x >=0, y >=1, z >=2 and x + y + z = 15 , then the number of values of ordered triplets (x,y,z) are