Home
Class 12
MATHS
sum(r=0)^m .^(n+r)Cn is equal to...

`sum_(r=0)^m .^(n+r)C_n` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

What is sum_(r=0)^(1) ""^(n+r)C_(n) equal to ?

If (1+x)^n=sum_(r=0)^n .^nC_r x^r then sum_(r=m)^n .^rC_m is equal to

If k=underset(r=0)overset(n)(sum)(1)/(.^(n)C_(r)) , then underset(r=0)overset(n)(sum)(r)/(.^(n)C_(r)) is equal to

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The valur of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1))) is equal to

sum_(r=1)^(n)r^(2)-sum_(m=1)^(n)sum_(r=1)^(m)r is equal to