Home
Class 12
MATHS
If x = t^(2) and y = t^(3), then (d^(2)y...

If `x = t^(2)` and `y = t^(3)`, then `(d^(2)y)/(dx^(2))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x = t^(2), y = t^(3) then (d^(2)y)/(dx^(2)) is

If x=t^(2)andy=t^(3) , then (d^(2)y)/(dx^(2)) is equal to: a) (3)/(2) b) (3)/(2)t c) (3)/(2t) d) (3)/(4t)

If x = t ^(2), y = t ^(3) then (d ^(2) y)/(dx ^(2)) =

If x=f(t) and y=g(t), then (d^(2)y)/(dx^(2)) is equal to

If x=t^(2) and y=t^(3), find (d^(2)y)/(dx^(2))

If x=t^(3)+t+5 and y=sin t then (d^(2)y)/(dx^(2))

If x = (2/ t ^(2)), y = t ^(3) -1, then (d ^(2) y)/(dx ^(2))=