Home
Class 11
PHYSICS
Velocity of the river with respect to gr...

Velocity of the river with respect to ground is given by `v_0.` Width of the river is d. A swimmer swims (with respect to water) perpendicular to the current with acceleration `a = 2t` (where t is time) starting from rest from the origin O at `t= 0.` The equation of trajectory of the path followed by the swimmer is

Promotional Banner

Similar Questions

Explore conceptually related problems

A boat starting from rest aims perpendicular to the river with an acceleration of a=6t (where t= time) the boat starts from (2,0) of the coordinate system. Find equation of trajectory. Given velocity of river =u .

A boat starting from rest aims perpendicular to the river with an acceleration of a=6t (where t= time) the boat starts from (2,0) of the coordinate system. Find equation of trajectory. Given velocity of river =u .

We know that when a boat travels in water, its net velocity w.r.t. ground is the vector sum of two velocities. First is the velocity of boat itself in river and other is the velocity of water w.r.t. ground. Mathematically: vecv_(boat) = vecv_(boat,water) + vecv_(water) . Now given that velocity of water w.r.t. ground in a river is u. Width of the river is d. A boat starting from rest aims perpendicular to the river with an acceleration of a = 5t, where t is time. The boat starts from point (1,0) of the coordinate system as shown in figure. Assume SI units. Find time taken by him to across the river.

We know that when a boat travels in water, its net velocity w.r.t. ground is the vector sum of two velocities. First is the velocity of boat itself in river and other is the velocity of water w.r.t. ground. Mathematically: vecv_(boat) = vecv_(boat,water) + vecv_(water) . Now given that velocity of water w.r.t. ground in a river is u. Width of the river is d. A boat starting from rest aims perpendicular to the river with an acceleration of a = 5t, where t is time. The boat starts from point (1,0) of the coordinate system as shown in figure. Assume SI units.

We know that when a boat travels in water, its net velocity w.r.t. ground is the vector sum of two velocities. First is the velocity of boat itself in river and other is the velocity of water w.r.t. ground. Mathematically: vecv_(boat) = vecv_(boat,water) + vecv_(water) . Now given that velocity of water w.r.t. ground in a river is u. Width of the river is d. A boat starting from rest aims perpendicular to the river with an acceleration of a = 5t, where t is time. The boat starts from point (1,0) of the coordinate system as shown in figure. Assume SI units.

We know that when a boat travels in water, its net velocity w.r.t. ground is the vector sum of two velocities. First is the velocity of boat itself in river and other is the velocity of water w.r.t. ground. Mathematically: vecv_(boat) = vecv_(boat,water) + vecv_(water) . Now given that velocity of water w.r.t. ground in a river is u. Width of the river is d. A boat starting from rest aims perpendicular to the river with an acceleration of a = 5t, where t is time. The boat starts from point (1,0) of the coordinate system as shown in figure. Assume SI units.

We know that when a boat travels in water, its net velocity w.r.t. ground is the vector sum of two velocities. First is the velocity of boat itself in river and other is the velocity of water w.r.t. ground. Mathematically: vecv_(boat) = vecv_(boat,water) + vecv_(water) . Now given that velocity of water w.r.t. ground in a river is u. Width of the river is d. A boat starting from rest aims perpendicular to the river with an acceleration of a = 5t, where t is time. The boat starts from point (1,0) of the coordinate system as shown in figure. Assume SI units.

We know that when a boat travels in water, its net velocity w.r.t. ground is the vector sum of two velocities. First is the velocity of boat itself in river and other is the velocity of water w.r.t. ground. Mathematically: vecv_(boat) = vecv_(boat,water) + vecv_(water) . Now given that velocity of water w.r.t. ground in a river is u. Width of the river is d. A boat starting from rest aims perpendicular to the river with an acceleration of a = 5t, where t is time. The boat starts from point (1,0) of the coordinate system as shown in figure. Assume SI units.