Home
Class 11
MATHS
If y=sqrt(x^2+6x+8), show that one value...

If `y=sqrt(x^2+6x+8),` show that one value of `sqrt(1+i y)+sqrt(1-i y)[i=sqrt(- 1)]` is `sqrt(2x+8)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt(x^(2)+6x+8), show that one value of sqrt(1+iy)+sqrt(1-iy)[i=sqrt(-1)] is sqrt(2x+8)

If y=sqrt(x^(2)+6x+8), show that one value of sqrt(1+iy)+sqrt(1-iy)[i=sqrt(-1)]" "is" sqrt(2x+8).

If y=sqrt(x^2+6x+8) then show that one of the value of sqrt(1+iy)+sqrt(1-iy) is sqrt(2x+8) (i=sqrt(-1))

If x*y=sqrt(x^2+y^2) the value of (1*2 sqrt 2)(1*-2 sqrt 2) is

If y= sqrt(x^2+6x+8) , then show that (1+ iy)^(1//2)+(1-iy)^(1//2)= sqrt(2(x+4)) .

If a,b are real and a^(2)+b^(2)=1, then show that the equation (sqrt(1+x)-i sqrt(1-x))/(sqrt(1+x)+i sqrt(1-x))=a-ib is satisfied y a real value of x.

Find x and y if: (3/sqrt(5) x-5)+i2 sqrt (5) y= sqrt(2)

Show : sqrt( x^-1y) times sqrt( y^-1z ) times sqrt( z^-1x) = 1

If sqrt(1-x^2) + sqrt(1-y^2) = a(x-y), show that dy/dx = sqrt((1-y^2)/(1-x^2))

If x=(1+i sqrt(3))/(2), then the value of y=x^(4)-x^(2)+6x-4 is