Home
Class 12
MATHS
let a > 0 , d > 0 find the value of the ...

let `a > 0 , d > 0` find the value of the determinant `|[1/a,1/(a(a + d)),1/( (a + d) (a +2d))],[1/(a+ d),1/( (a+ d) (a + 2d)), 1/((a+2d) (a + 3d))],[1/(a +2d), 1/((a + 2d) (a +3d)), 1/((a+3d) (a + 4d))]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

let a>0,d>0 find the value of the determinant (1)/(a)_((1)/(a(a+d))),(1)/((a+d)(a+2d))(1)/(a+d),(1)/((a+d)(a+2d)),(1)/((a+2d)(a+3d))(1)/(a+2d),(1)/((a+2d)(a+3d)),(1)/((a+3d)(a+4d))]|

The determinant : |{:(a,a+d,a+2d),(a^2,(a+d)^2,(a+2d)^2),(2a+3d,2(a+b),2a+d):}|=0 Then

(ii) sum of series of form (1)/(a(a+d))+(1)/((a+d)(a+2d))+(1)/((a+2d)(a+3d))+......(1)/((a+(n-2)d)(a+(n-1)d))

If 3 + (3 + d) (1)/(4) + (3+ 2d) (1)/(4^(2)) + …oo= 8 then d=

lim_(x rarr oo){(1)/(a(a+d))+(1)/((a+d)(a+2d))+(1)/((a+2d)(a+3d))+............ nterms

If the sum to infinity of the series 1- ( 1+d) (1)/(3) +(1+ 2d) (1)/(9) -( 1+3d) .(1)/( 27) + ………" is" (9)/(16) , find d.

Lt_(x to oo) ((1)/(a(a+d))+(1)/((a+d)(a+2d))+.....+(1)/([a+(n-1)d][a+nd]))=

Examine whether the following sequences are in H.P. : {(1)/(c + 3d'), (1)/(c + 2d'), (1)/(c'), (1)/(c - 3d'),…}

If D=diag[2, 3, 4] , then D^(-1)= ...a) O b) I c) D d) diag [(1)/(2), (1)/(3), (1)/(4)]