Home
Class 12
MATHS
If sum(i=1)^(2n) sin^-1 xi = n pi then...

If `sum_(i=1)^(2n) sin^-1 x_i = n pi` then find the value of `sum_(i=1)^(2n) x_i`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(2n) sin^-1x_i = npi then find the value of sum_(i = 1)^(2n) x_i

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 then find the value of sum_(i=1)^(2n)x_(i)

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

If sum_(i=1)^(2n)cos^(-1)x_i=0 then find the value of sum_(i=1)^(2n)x_i

sum_(i=1)^(2n)sin^(-1)(x_(i))=n pi then the value of sum_(i=1)^(n)cos^(-1)x_(i)+sum_(i=1)^(n)tan^(-1)x_(i)=(A)(n pi)/(4)(B)((2)/(3))n pi(C)((5)/(4))n pi(D)2n pi

sum_(i=1)^(2n) sin^(-1)(x_i)=npi then the value of sum_(i=1)^n cos^(-1)x_i+sum_(i=1)^n tan^(-1)x_i= (A) (npi)/4 (B) (2/3)npi (C) (5/4)npi (D) 2npi

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .