Home
Class 8
MATHS
[" Using properties of determinants,show...

[" Using properties of determinants,show the following: "],[qquad |[(b+c)^(2),ab,ca],[ab,(a+c)^(2),bc],[ac,bc,(a+b)^(2)]|=2abc(a+b+c)^(3)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants, show the following: |[(b+c)^2,ab, ca],[ab,(a+c)^2,bc ],[ac ,bc,(a+b)^2]|=2abc(a+b+c)^3

Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3

Prove that |[(a+b)^(2),ca,bc],[ca,(b+c)^(2),ab],[bc,ab,(c+a)^(2)]|=2abc(a+b+c)^(3)

Using the properties of determinants, prove the following |{:((a+b)^2,ca,cb),(ca,(b+c)^2,ab),(bc,ab,(c+a)^2):}|=2abc(a+b+c)^3

Using properties of determinants, prove the following |(a^2,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .

Using properties of determinants, prove the following : |[a, a^2,bc],[b,b^2,ca],[c,c^2,ab]|=(a-b)(b-c)(c-a)(b c+c a+a b)

Using properties of determinants,prove the following : det[[a,a^(2),bcb,b^(2),cac,c^(2),ab]]=(a-b)(b-c)(c-a)(bc+ca+ab)

Using properties of determinants prove the following. abs[[1,a,bc],[1,b,ca],[1,c,ab]]=(a-b)(b-c)(c-a)

Using the properties of determinant, show that : |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]| = 1+a^2+b^2+c^2