Home
Class 12
MATHS
If |z| <= 1 and |omega| <= 1, show that ...

If `|z| <= 1 and |omega| <= 1,` show that `|z-omega|^2 <= (|z|-|omega|)^2+(arg z-arg omega)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|=.......=|z_n|=1, prove that |z_1+z_2+z_3++z_n|=1/(z_1)+1/(z_2)+1/(z_3)++1/(z_n)

If |z_1|=|z_2|=|z_3|"…."=|z_n|=1 then |z_(1)+z_(2)+"….."+z_(n)|=

If |z+ bar(z)|+ |z-bar(z)| =2 , then z lies on

If |2z-1|=|z-2| and z_(1),z_(2),z_(3) are complex numbers such that |z_(1)-alpha| |z|d.>2|z|

If |z_1|=|z_2|=|z_3|=......=|z_n|=1 , then |z_1+z_2+z_3+......+z_n|=

Modulus of a Complex Number & its properties If z;z_1;z_2inCC then (i)|z|=0hArrz=0 i.e. Re(z)=Im(z)=0 (ii)|z|=|barz|=|-z| (iii) -|z|leRe(z)le|z|;-|z|leIm(z)le|z| (iv) zbarz=|z|^2 (v)|z_1z_2|=|z_1||z_2| (vi)|(z_1)/(z_2)|=|z_1|/|z_2|; z_2!=0