Home
Class 12
MATHS
Let O be the origin, and O X , O Y ...

Let `O` be the origin, and ` O X , O Y , O Z ` be three unit vectors in the direction of the sides ` Q R ` , ` R P ` , ` P Q ` , respectively of a triangle PQR. `| O X xx O Y |=` `s in(P+R)` (b) `sin2R` `(c)sin(Q+R)` (d) `sin(P+Q)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let O be the origin, and O X , O Y , O Z be three unit vectors in the direction of the sides Q R , R P , P Q , respectively of a triangle PQR. | O X xx O Y |= (a)sin(P+R) (b) sin2R (c)sin(Q+R) (d) sin(P+Q)dot

Let O be the origin, and O X , O Y , O Z be three unit vectors in the direction of the sides Q R , R P , P Q , respectively of a triangle PQR. | O X xx O Y |= (a) sin(P+R) (b) sin2R (c)sin(Q+R) (d) sin(P+Q)dot

Let O be the origin, and O X , O Y , O Z be three unit vectors in the direction of the sides Q R , R P , P Q , respectively of a triangle PQR. | O X xx O Y |= (a)sin(P+R) (b) sin2R (c)sin(Q+R) (d) sin(P+Q)dot

Let O be the origin, and vector OX,OY,OZ be three unit vectors in the directions of the sides vectors QR,RP, PQ respectively, of a triangle PQR. Vector |vec(OX)=vec(OY)|= (A) sin2R (B) sin(P+R) (C) sin(P+Q) (D) sin(Q+R)

Let O be the origin, and O X x O Y , O Z be three unit vectors in the direction of the sides Q R , R P , P Q , respectively of a triangle PQR. If the triangle PQR varies, then the minimum value of cos(P+Q)+cos(Q+R)+cos(R+P) is: -3/2 (b) 5/3 (c) 3/2 (d) -5/3

Let O be the origin, and O X x O Y , O Z be three unit vectors in the direction of the sides Q R , R P , P Q , respectively of a triangle PQR. If the triangle PQR varies, then the minimum value of cos(P+Q)+cos(Q+R)+cos(R+P) is: -3/2 (b) 5/3 (c) 3/2 (d) -5/3

Let O be the origin, and O X x O Y , O Z be three unit vectors in the direction of the sides Q R , R P , P Q , respectively of a triangle PQR. If the triangle PQR varies, then the minimum value of cos(P+Q)+cos(Q+R)+cos(R+P) is: -3/2 (b) 5/3 (c) 3/2 (d) -5/3

Let O be the origin, and O X x O Y , O Z be three unit vectors in the direction of the sides Q R , R P , P Q , respectively of a triangle PQR. If the triangle PQR varies, then the minimum value of cos(P+Q)+cos(Q+R)+cos(R+P) is: -3/2 (b) 5/3 (c) 3/2 (d) -5/3

Let O be the origin and OX, OY, OZ be three unit vectors in the directions of the sides, QP, RP, QR respectively of a trianglePQR . Q. If the triangle PQR varies, then the minimum value of cos(P+Q)+cos(Q+R)+cos(R+P) is

Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vector in the directions of the sides vec(QR) , vec(RP),vec(PQ) respectively , of a triangle PQR. if the triangle PQR varies , then the manimum value of cos (P+Q) + cos(Q+R)+ cos (R+P) is